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ABSTRACT

To ameliorate suboptimality in ensemble data assimilation, methods have been introduced that involve

expanding the ensemble size. Such expansions can incorporate model space covariance localization and/or

estimates of climatological or model error covariances. Model space covariance localization in the vertical

overcomes problematic aspects of ensemble-based satellite data assimilation. In the case of the ensemble

transformKalman filter (ETKF), the expanded ensemble size associated with vertical covariance localization

would also enable the simultaneous update of entire vertical columns of model variables from hyperspectral

and multispectral satellite sounders. However, if the original formulation of the ETKF were applied to an

expanded ensemble, it would produce an analysis ensemble that was the same size as the expanded forecast

ensemble. This article describes a variation on the ETKF called the gain ETKF (GETKF) that takes ad-

vantage of covariances from the expanded ensemble, while producing an analysis ensemble that has the

required size of the unexpanded forecast ensemble. The approach also yields an inflation factor that depends

on the localization length scale that causes the GETKF to perform differently to an ensemble square root

filter (EnSRF) using the same expanded ensemble. Experimentation described herein shows that theGETKF

outperforms a range of alternative ETKF-based solutions to the aforementioned problems. In cycling data

assimilation experiments with a newly developed storm-track version of the Lorenz-96 model, the GETKF

analysis root-mean-square error (RMSE) matches the EnSRF RMSE at shorter than optimal localization

length scales but is superior in that it yields smaller RMSEs for longer localization length scales.

1. Introduction

Nonvariational ensemble Kalman filters (Houtekamer

and Mitchell 1998; Bishop et al. 2001; Anderson 2001;

Whitaker and Hamill 2002) are now used across a wide

range of fields. Variations on these techniques that involve

expanding the ensemble size beyond the K ensemble

members propagated by the nonlinear ensemble forecast

have been proposed for differing reasons.

Bishop and Hodyss (2009, 2011) introduced ensemble

expansion techniques in order to allow flow-dependent

time-evolving ensemble covariance localization. These

papers used the fact that an ensemble of size K that is

expanded to a size ofM5 LK by taking the element-wise

product of each raw-member with each of the L columns

of the square root of a localization matrix results in an

M-member ensemble whose covariance is inherently lo-

calized. We shall hereafter refer to this type of expansion

as a modulation product ensemble expansion. Leng et al.

(2013) used an equivalent procedure to obtain non-

adaptive inherent localization. Whitaker (2016) used a

modulation product ensemble expansion to inherently

localize ensemble covariances in the vertical and thus

avoid the pitfalls outlined in Campbell et al. (2010) of

attempting to localize satellite radiance ensemble co-

variances in radiance space rather than model space.Corresponding author: Craig H. Bishop, bishop@nrlmry.navy.mil
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Kretschmer et al.’s (2015) climatologically augmented

local ensemble transform Kalman filter (ETKF) ex-

pands the ensemble size by introducing M–K climato-

logical forecast error proxies to the rawK forecast error

proxies produced by the nonlinear model to create an

M-member ensemble. As shown by Bishop and Satterfield

(2013), the mean of the distribution of true error vari-

ances given an imperfect ensemble variance is a weighted

ensemble variance plus a weighted climatological vari-

ance. Kretschmer et al.’s innovation allows such hybrid

error covariance models to be incorporated directly

into the ETKF framework. Sommer and Janjic (2017)

tested ensemble expansions similar toKretschmer et al.’s

(2015) but in their case they used them to account for

model error.

Regardless of the motivation for using an ensemble of

size M to update the ensemble mean while only propa-

gating an ensemble of size K, one is faced with the

question of how to create the K analysis perturbations

that will be used to initialize the next K-member en-

semble forecast. In considering how to do this, one must

also account for the fact that when some type of en-

semble expansion has been employed, some ensemble

perturbations may be considered to be more repre-

sentative of the true forecast error distribution. For

well-tuned ensemble forecasting systems, the most

representative ensemble perturbations will be the K

ensemble perturbations produced by the nonlinear

forecast model. The gain ETKF (GETKF) introduced in

this paper, provides a way of producing K analysis en-

semble members from an M-member prior ensemble

that can account for the fact that the K raw ensemble

perturbations are likely better error proxies than arbi-

trarily selected members of the M-member ensemble.

To illustrate the technique, we will focus on the case

where the ensemble expansion is used to enable vertical

ensemble covariance localization for the assimilation of

satellite-like observations that are vertical integrals of

the state. Section 2 uses a simple satellite-relevant data

assimilation problem to illustrate how (i) the modula-

tion ensemble expansion technique would improve the

ability of the ETKF to extract information from satel-

lites but (ii) does not provide an obvious solution for the

problem of how to create a K-member analysis ensem-

ble from theM-member analysis ensemble produced by

the ETKF. Section 3 introduces the GETKF as a solu-

tion to this problem. Sections 4 and 5 compare the ac-

curacy of the GETKF method for obtaining K analysis

members with various ad hoc methods for obtaining K

analysis members from the ETKF’s M analysis mem-

bers. Section 4 makes the comparison using statistical

models and theoretically derived true analysis error co-

variance matrices while section 5 makes the comparison

within the context of a newly developed storm-track ver-

sion of the Lorenz-96 model and a cycling data assimila-

tion scheme. Concluding remarks follow in section 6.

2. ETKF satellite data assimilation and modulated
ensembles

a. Modulated ensembles

Consider the problem of estimating a n 5 100 grid-

point vertical profile of temperature from p 5 100 sat-

ellite radiances whose vertical weighting functions are

depicted in Fig. 1. Methods of localizing ensemble co-

variances in the vertical based on the distances between

observations and model variables (Hamill et al. 2001)

are inappropriate for such observations because the

variable that is observed does not exist at a single height:

each observation is an integral of variables at many

different heights. Campbell et al. (2010) compared the

performance of EnKFs that used model space vertical

covariance localization, in which the localization is

prescribed purely in terms of the distance between

model variables, and EnKFs that used observation space

localization, in which the localization is based on ‘‘esti-

mated’’ distances between satellite observations and

other variables. They found that the model space lo-

calization was superior to the observation space locali-

zation. In particular, the observation space localization

approach was unable to recover the true state in the

special case where there are as many perfect satellite

observations as there are model variables. In contrast,

with model space localization, EnKFs were readily able

to recover the true model state in this case.

Bishop and Hodyss (2009) showed that an easy way of

incorporatingmodel space localization within an ETKF-

type data assimilation scheme is to recognize that if the

n3L matrix W5 [w1, w2, . . . , wL] is a square root of a

model space localization matrix F5WWT 5�L

i51wiw
T
i

and the n 3 K matrix U 5 [u1, u2, . . . , uK] 5
1/

ffiffiffiffiffiffiffiffiffiffiffiffi
K21

p
[x0f1, x

0f
2, . . . , x0fK]5 X0f /

ffiffiffiffiffiffiffiffiffiffiffiffi
K21

p
is a square

root of the unlocalized ensemble covariance matrix

Pf
ens 5UUT 5�K

j51uju
T
j 5 1/(K2 1)�K

j51x
0f
j (x

0f
j )

T, where

x0fj 5 x f
j 2 (1/K)�K

j51x
f
j is the jth raw ensemble pertur-

bation corresponding to the jth ensemble forecast

member x f
j , then the localized ensemble covariance

matrix is given by

Pf
loc 5Pf

ens1F5ZZT , (1)

where the symbol 1 defines the Schur elementwise

matrix/vector product and where the square root Z of

P f
loc is a n3 (KL) matrix given by the modulation

product (n) of U by W defined by
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The expansion of the ensemble size is evident from (2): Z

has M5KL ensemble members whereas U only has K

ensemble members. In the case examined by Whitaker

(2016), the modulation product pertained strictly to a

vertical localization covariance matrix and L;O(10) and

hence the modulation product ensemble was an order of

magnitude larger than the raw ensemble. The proof that

the expanded ensemble given by (2) satisfies (1) is given in

Eqs. (1) and (2) of Bishop and Hodyss (2009).

As an illustration of this modulation product ensem-

ble expansion procedure, suppose that the element in

the ith row and jth column of the true n 3 n forecast

error covariance matrix P is given by

fPg
ij
5

ffiffiffiffiffi
ij

n2

r
exp

"
2
1

2

�
i2 j

d
1

�2
#

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
12

i

n

��
12

j

n

�s
exp

"
2
1

2

�
i2 j

d
2

�2#
, (3)

with n5 100, d1 5 1, and d2 5 8. With this setup, as can

be seen from Fig. 2a, the error correlation length scale is

larger between variables situated in the lower atmo-

sphere (small values of i and j) than the upper atmo-

sphere. With (3) as the true forecast error covariance

matrix, we can obtain a reasonable counterpart for the

n3K matrix Xf of K raw forecast ensemble perturba-

tions using

Xf 5P1/2[randn(n,K)], (4)

where [randn(n, K)] is an n3K matrix whose elements

are random independent draws from a normal distri-

bution with mean zero and variance 1. Using (4), a K 5
50 member ensemble was generated and then its (un-

localized) covariance matrix Pf
ens was plotted in Fig. 2b.

Comparing Figs. 2b and 2a, it is easy to see that the

ensemble covariance elements far from the diagonal

differ markedly from the true forecast error covariance

matrix. An effective way of suppressing these spurious

correlations is to take the elementwise (Schur) product

of Pf
ens with the localization matrix F depicted in Fig. 2c

to obtain the localized ensemble covariance Pf
loc shown

in Fig. 2d. Comparison of Figs. 2d, 2a, and 2b shows that

FIG. 1.Many satellites observeweighted vertical integrals of the atmospheric state. Here, we consider satellite-like observations that are

weighted vertical integrals of the state of an idealized data assimilation model. The abscissa axis gives this model’s vertical level while the

ordinate axis gives the weights used in the vertical integral. Each distinct line in the above diagram depicts the set of weights used

to vertically integrate the state to create a satellite-like observation. The sum of the weights associated with each observation is equal to

unity. The weighting functions associated with every 10th observation have been plotted with a thick line in order to make it easier to

distinguish the shape of individual weighting functions (each weighting function has a single peak). There are 100 distinct observations:

one for each model level.
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the elements ofPf
loc far from the diagonal aremuchmore

similar to those of the true P than those of the un-

localized Pf
ens. Note that the localization matrix F has

similar overall characteristics to P but broader length

scales. It was created by the following three steps:

(i) Broader length scales defined by ~d1 5 3d1 and ~d2 5
3d2 were used in (3) to create a correlationmatrix ~F

that was similar to P but with broader length scales.

(ii) The eigenvectors and eigenvalue pairs of ~F were

computed and ordered from largest eigenvalue to

smallest eigenvalue. Having determined that only 10

eigenvalues were sufficient to account for 85% of the

sum of all the eigenvalues, the 10 leading (eigenvec-

tor, eigenvalue) pairs were used to create a low-rank

approximation ~Flow rank 5 ~W ~WT to ~F. Note that each

column of ~W is an eigenvector of ~Fmultiplied by the

square root of its corresponding eigenvalue.

(iii) The final low-rank localization matrix F was

created by removing the deviation of the

diagonal of ~Flow rank from unity using F 5
[diag(~Flow rank)]

21/2~Flow rank[diag(~Flow rank)]
21/25WWT,

where W5 f[diag(~Flow rank)]
21/2 ~Wg.

The first three columns [w1, w2, w2] of W correspond-

ing to the three largest eigenvalues are plotted in

Fig. 3.

Figure 3 allows us to visualize the relationship between

the raw ensemble members and the modulated ensemble

members. Referring to (2), the first K members of the

modulated ensemble are (w11u1, w11u2, . . . , w11uK);

hence, they are simply the raw perturbationsmodulated by

an elementwise product with w1. Figure 3a shows that the

main effect of this modulation would be to attenuate the

amplitude of the raw perturbations in the upper atmo-

sphere. The second set of K members in the modulated

ensemble are given by (w21u1, w21u2, . . . , w21uK).

Figure 3b shows that these perturbations have the opposite

sign of the original perturbations in the lower atmosphere

and the same sign as the original perturbations in the upper

FIG. 2. (a) The true forecast error covariance matrix P. (b) The sample covariance matrix from a 50-member

ensemble Pf
ens. (c) The low-rank localization matrix F obtained from a high-rank localization matrix by only using

the top 10 eigenvectors and eigenvalues of the high-rank localization matrix and then renormalizing those

eigenvectors to ensure that each diagonal element of the low-rank localization matrix F is equal to 1. (d) The

localized ensemble covariance matrix Pf
loc 5Pf

ens1F. The ranges of the color scales indicate the range of the

displayed field.
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atmosphere. Figure 3c shows that unlike the first and sec-

ond sets, which have zero amplitude at the top of the at-

mosphere, this third set retains some of the amplitude

of the original perturbations at the top of the atmosphere.

In addition, Fig. 3c shows that this third set of perturba-

tions will have zero amplitude at two intermediate loca-

tions in the vertical. Comparison of all the panels in Fig. 3

shows that columns ofW have a sinusoidal nature with the

associated wavenumber (wavelength) becoming larger

(smaller) as the index of the column is increased. With this

in mind, a qualitative picture of how the modulated en-

semble members differ from the original ensemble mem-

bers is realized.

Note that a sufficient condition for the mean of the

modulated ensemble perturbations to be equal to zero is

that the mean of the raw ensemble perturbations be

zero. To see this, note that

�
M

k51

z
k
5 �

L

i51
�
K

j51

u
j
1w

i

5 �
L

i51

 
�
K

j51

u
j

!
1w

i
5 0, provided

�
K

j51

u
j
5 �

K

j51

x0fjffiffiffiffiffiffiffiffiffiffiffiffi
K2 1

p 5 0 . (5)

Hence, one can use the M modulated ensemble per-

turbations to create an M-member ensemble Vf 5
[v f

1 , v
f
2 , . . . , v

f
M] that has the same mean as the original

ensemble using

v f
k 5

 
1

K
�
K

j51

x f
j

!
1 (

ffiffiffiffiffi
M

p
)z

k
. (6)

The ensemble given by (6) then has a mean and co-

variance that satisfy

v f 5
1

M
�
M

i51

v f
i 5

1

K
�
K

j51

x f
j 5 x f and

�
M

i51

(v f
i 2 v f )(v f

i 2 v f )T

M
5P f

loc , (7)

respectively. In other words, while the M 5 KL

members of the modulated ensemble have the same

mean as the original ensemble, they have a covari-

ance equal to that of the localized ensemble covari-

ance. This has been confirmed to machine precision

for the localized ensemble covariance depicted in

Fig. 2d.

b. The modulated ETKF (METKF) and the analysis
ensemble reduction problem

A key computational step in using the ETKF (Bishop

et al. 2001) and its local variation (LETKF; Hunt et al.

2007) to assimilate p observations with an M member

ensemble is to compute the matrix

FIG. 3. The first three columns of the square root W of the low-rank localization matrix F.
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A5 ( ~HZ)T( ~HZ), where

~HZ5
R21/2f[H(v f

1 )2H(vf )], [H(v f
2 )2H(vf )], . . . , [H(v f

M)2H(vf )]gffiffiffiffiffi
M

p , and

H(vf )5
1

M
�
M

i51

H(v f
i ) , (8)

where H is the (nonlinear) observation operator, R is

the p 3 p observation error covariance matrix, and
~H5R21/2H is a normalized nonlinear observation op-

erator. Ignoring the relatively small cost (;Mp opera-

tions) of computing the normalized observation space

ensemble perturbations ~HZ, the number of operations

required to compute the matrix A is proportional to

M2p. The ETKF uses the eigenvector decomposition:

A5CGCT , (9)

where C is the orthonormal eigenvector matrix and G

is a diagonal matrix of corresponding eigenvalues. The

cost of computing (9) is proportional to M3. The ETKF

estimate of the covariance of the distribution of truth

after the assimilation of observations [Eq. (18a) in

Bishop et al. (2001)] follows from the singular value

decomposition, ~HZ5EG1/2C, and a careful handling of

the vectors associated with zero singular values; it is

given by

Pa
METKF 5ZZT 2Z( ~HZ)T[( ~HZ)( ~HZ)T 1 I]21( ~HZ)ZT

5ZC(G1 I)21CTZT 5ZaZaT ,

(10)

where the subscript METKF stands for modulated

ETKF and where

Za 5Z[C(G1 I)21/2CT] and

~HZa 5 ( ~HZ)[C(G1 I)21/2CT] (11)

give the METKF analysis perturbations in model and

observation space, respectively; in addition, the poste-

rior mean of the distribution of truth is given by

va 5 vf 1Za( ~HZa)T[R21/2y2 ~Hvf ] . (12)

Note that (12) implicitly incorporates the localization

matrix F. Furthermore, note that if F was the rank one

matrix in which all elements are equal to 1 then (12)

would give a posterior mean identical to that which

would be obtained from an ETKF with no localization

and no modulated ensemble.

The performance advantages of such implicit vertical

localization over no localization can be illustrated using

our idealized error model. We first generate a true state

xt using

xt 5P1/2[randn(n, 1)]. (13)

Comparison of (13) with (4) makes it clear that (13)

ensures that our raw ensemble members are drawn from

the same distribution as the truth. We then generate p5
100 true observations using yt 5Hxt, where each row of

H is one of the weighting functions shown in Fig. 1. To

create relatively accurate but error-prone observations y

of known observation error covariance R from these

true observations, we let

R5
1

64
[diag(HPHT)] , (14)

where [diag(HPHT)] is the diagonal matrix formed from

the diagonal elements of the matrix HPHT, and then

we let

y5 yt 1R1/2[randn(p, 1)]. (15)

Employing a raw ensemble generated using (4), (12) was

used to estimate the true posterior mean with and

without the use of a modulated ensemble. The un-

modulated or raw ensemble case was simply achieved

by replacing the F localization matrix depicted in Fig. 2c

by the rank one matrix whose elements are all equal

to unity.

The blue line in Fig. 4a depicts an example of a true

model state generated using (13). In Fig. 4b, the blue line

depicts the corresponding true state in observation

space while the red line depicts the corresponding error-

prone observations and the cyan line depicts the mean

of the forecast ensemble in observation space. The dif-

ference between the observations (Fig. 4b, red line) and

the prior mean in observation space (Fig. 4b, cyan line)

is then used in (12) to correct the model space prior

ensemble mean (Fig. 4a, cyan line). The resulting

analyses obtained with and without a modulated en-

semble are depicted in Fig. 4a by the mauve and black

lines, respectively. Inspection of Fig. 4a shows that the
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M5KL5 500 member modulated ensemble allows the

analysis (mauve line) to track the true state (blue line)

more closely than the analysis (black line) from the

unmodulated K 5 50 member ensemble. Direct com-

putation shows that, in this case, the mean square errors

(MSEs) of the analyses with and without the modulated

ensembles are 0.26 and 0.6, respectively. To check

whether this difference was statistically significant, the

aforementioned data assimilation experiment was re-

peated eight times using entirely independent random

numbers to create the truth, the observations, and the

ensemble. The dashed and solid lines give the MSEs for

the unmodulated and modulated ensemble cases, re-

spectively, in each of these eight experiments. In all

eight cases, the MSE obtained using the modulated en-

semble was lower than that obtained using the un-

modulated ensemble. If there were no statistical

difference in ETKF performance with and without

modulated ensembles, then the probability of finding

superior performance in eight out of eight cases would

be 228 ’ 0. 004 and hence this null hypothesis can be

rejected with more than 99% confidence. Considering

all eight of the cases, the mean MSEs with and without

the modulated ensemble were 0.22 and 0.38, respec-

tively. Thus, this idealized example provides a simple

illustration of how the implicit model space localization

imparted by the modulated ensembles fundamentally

improves the ability of the ETKF to extract information

from accurate satellite-like observations.

An unrealistic aspect of our simple model is the fact that

it only represents a single-model vertical column. In

practical applications of the ETKF, one uses the local form

(Hunt et al. 2007) to allow all observations from a neigh-

boring observation volume to update some variables at the

center of the observation volume. Localization is typically

achieved by computing the separation distances between

observations and the model variables being updated, and

then, either artificially increasing observation error vari-

ance with increasing separation distance and/or by ex-

cluding observations whose separation distance exceeds

a critical value. Without the implicit vertical localization

imparted viamodulation product ensemble expansion, one

would typically only update the variables at a single grid

point with each application of the ETKF. When there are

many observations distributed in the vertical, this ap-

proach makes for redundant calculations, as there are a

large number of observations that are common to each

observation volume. The vertical covariance localization

via modulation product ensemble expansion approach

described here opens up the possibility of using LETKF

observation volumes to simultaneously update entire ver-

tical columns of variableswhile still applying localization at

FIG. 4. Data assimilation setup and performance. (a) The blue and cyan lines, respectively, give the model space truth and prior mean,

while the mauve and black lines give the ETKF analysis mean with and without modulated ensembles, respectively. (b) The blue and red

lines give the observation space truth and error-prone observations, respectively, while the cyan line gives the observation space prior

mean. (c) The solid and dashed lines, respectively, give the MSE of the ETKF with and without localization during eight independent

trials. Note that the abscissa in (a) refers to the model index, in (b) it refers to the observation index, and in (c) it refers to the index of an

independent trial.
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each level. Within this framework, model space vertical

ensemble covariance localization is obtained through the

use of a modulation product while horizontal localization

would be obtained using standard LETKF localization

techniques such as distance-dependent observation error

variance inflation and/or some sort of distance-dependent

observation exclusion procedure (Hunt et al. 2007). For

this case, the METKF update can be written in the form

S
j
va 5S

j
vf 1 (S

j
Z)[C(G1 I)21CT]( ~H

j
Z)T[R21/2

j y2 ~H
j
vf ]

(16)

for the ensemble mean, where Sj selects the n model

variables associated with the jth vertical column of the

model, ~Hj is the observation operator associated with

the corresponding jth observation volume, and Rj is the

observation error covariance matrix for these observa-

tions. (Recall that the observation error variances in Rj

may be artificially inflated with distance from the central

column being updated.) For the individual ensemble

members,

S
j
Va
loc 5 (S

j
va)1TM 1 (

ffiffiffiffiffi
M

p
)(S

j
Z)[C(G1 I)21/2CT], where

1TM 5 [1, 1, . . . , 1]|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
M elements

.

(17)

The n 3 M matrix SjV
a
loc is the modulated LETKF en-

semble of analyses at the jth grid column. Note that (11)

and (17) utilize the symmetric form C(G1 I)21CT of the

ETKF discussed by Wang et al. (2004) and Hunt et al.

(2007).

Updating entire vertical columns of variables saves as

many calls to the ETKF solver as there are vertical

model levels [O(100)]. However, it also increases the

number of observations processed by the ETKF in each

call. The net effect of this change to the computational

cost will depend on the specific details of the LETKF

implementation and the observational network. The

number of floating point operations required for the

modulated ensemble form of the LETKF depends on

the number of observations p within the cylindrical ob-

servation volume used to update a vertical column, the

number n of model variables in the vertical column be-

ing updated, the number of unmodulated ensemble

members K, the number of eigenvectors retained when

approximating the square root of the vertical localiza-

tion matrix L, and the number of modulated ensemble

membersM5KL. In current global atmospheric models,

we estimate these parameters to have the following orders

of magnitude: p; 104, n; 53 102, K; 102, L; 10, and

M; 103. The operation count scaling for the steps re-

quired for the ensemble mean update given by (16) is

then as follows: ( ~HjZ)
T[R21/2

j y2 ~Hjvf ] is proportional to

Mp; 107 operations while the subsequent operation

[C(G1 I)21CT]f( ~HjZ)
T[R21/2

j y2 ~Hjvf ]g is proportional

toM2 ; 106 operations and the remaining operations are

negligible compared with these results.

The operation count scaling for the ensemble update

given by (17) is dominated by the cost of computing

(SjZ)[C(G1 I)21/2CT]: a cost that is proportional to

nM2 ; 53 108 operations. This cost is smaller than the

M2p; 1010 cost of forming theAmatrix in (9). However,

the nM2 ; 53 108 cost of updating the ensemblemean is

comparable with the M3 ; 109 cost of performing the

eigenvalue decomposition of (9). Note that there is a

strong dependence on the number L of eigenvectors

retained from the localization matrix. If only two ei-

genvectors were retained rather than 10, then the

dominantM2p cost of computing the matrix A would be

reduced by a factor of 25 and if no modulation product

was used so that one recovered the basic LETKF, the

speed of the procedure would be increased by a factor of

100. A corollary of this fact is that updating 100 vertical

grid points simultaneously using a modulated ensemble

with L 5 10 takes 100 times longer than updating a

single vertical grid point with no ensemble modulation.

However, if there were 100 vertical grid points, the cost

of updating the entire vertical column with or without

modulation would be about the same.

Within the context of a cycling ensemble data assim-

ilation scheme operating on a computer with sufficient

resources to run an ensemble with K members, (17)

presents a problem: it givesM5KL posterior ensemble

members but there are only enough computational re-

sources to propagate K members. How might the K

members Xa be obtained?

A perturbed observations approach (Burgers et al.

1998) would be to set

S
j
xaPO,i 5S

j
x f
i 1 (S

j
Z)[C(G1 I)21CT]

3 ( ~H
j
Z)T[R21/2

j (y1 y0i)2 ~H
j
x f
i ], i5 1, 2, . . . ,K,

(18)

where y0i is the ith vector of K random normally dis-

tributed observation perturbations. Each sample of K

perturbations has the mean removed so that �K

i51y
0
i 5 0

and each perturbation is inflated by the factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K/(K2 1)

p
so that h1/K�K

i51y
0
iy

0T
i i5R. The K anal-

ysis states obtained from (18) are stored in the matrix

Xa
PO and the corresponding sample covariance is de-

noted Pa
PO.
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A stochastic subsampling approach would be to set

S
j
Xa
SS 5 (S

j
va)1TK 1S

j
Za[randn(M,K)],

where S
j
Za 5 (S

j
Z)[C(G1 I)21/2CT] (19)

where [randn(M, K)] is an M 3 K matrix whose ele-

ments are independent random draws from a normal

distribution. The sample covariance of the K member

ensemble Xa
SS is denoted Pa

SS. Note that an appealing

aspect to this approach is that the expected covariance

of this random sample K-member ensemble is identical

to Pa
METKF; that is, P

a
METKF 5 hPa

SSi.
A deterministic subsampling approach would be to set

S
j
Xa
DS 5 (S

j
va)1TK 1S

j
Za[:, (i: di:Kdi)], (20)

where Za[:, (i: di:Kdi)] is the matrix formed by the K

columns of Za with indices given by [i, i1 di, i1
2di, . . . , i1Kdi], where the initial index i and the index

step di are tunable parameters.Wenote that inKretschmer

et al.’s (2015) work using an ensemble expanded by means

of augmentation with proxies for climatological forecast

errors, a deterministic subsampling approach was used to

obtain K initial conditions from an M-member ensemble.

In their case, the first K members of the M-member en-

semble corresponded to raw forecast perturbations. These

were considered better estimates of the true forecast error

covariancematrix than the climatological perturbations.To

obtain analysis perturbations closely associated with these

members, they simply selected the first K members of the

posterior ensemble. This is the case of deterministic sub-

selection obtained when one sets i5 di5 1.

Both of these methods are easy to implement and add

little to the cost of the method. In the next section we

introduce the GETKF and in the section after that, we

present the results of tests that show that the GETKF

gives a K-member analysis ensemble covariance matrix

Pa
GETKF that is closer to the true analysis error covariance

matrix than Pa
PO,P

a
SS, and Pa

DS.

3. The gain form of the ETKF (GETKF)

Note that (11) can be rewritten in the form

Za 5Z[C(G1 I)21/2CT]

5Z2Z1Z[C(G1 I)21/2CT]

5Z2Z[CCT 2C(G1 I)21/2CT] because CCT 5 I

5Z2ZC[I2 (G1 I)21/2]CT .

(21)

From the last line of (21), we will deduce a form of the

ETKF that updates just the K unmodulated perturbations

while respecting key aspects of the localized ensemble co-

variances used by the data assimilation scheme.

Note that the modulated ensemble in observation

space ~HZ has the concise singular value decomposition

(SVD):

~HZ5EG1/2CT . (22)

By concise SVD, we mean the SVD that removes all of

the left and right singular vectors corresponding to zero

singular values. Equation (22) implies that

E5 ~HZCG21/2 and that CT 5G21/2ET ~HZ . (23)

Using (23) in (21) gives

Za 5Z2 fZC[I2 (G1 I)21/2]G21CT( ~HZ)Tg( ~HZ) . (24)

Like (11), (24) yields M5KL posterior perturbations.

However, note that (24) can be approximated by

Za ffi [I2 fZC[I2 (G1 I)21/2]G21CT( ~HZ)Tg~H]Z, where

~H5R21/2›H(xf )

›(xf )T

5 (I2 ~K~H)Z5 (I2 ~K~H)

�
Vf 2 vf1TMffiffiffiffiffi

M
p

�
5

�
Va
loc 2 va1TMffiffiffiffiffi

M
p

�
,

(25)

where ~K 5 fZC[I 2 (G 1 I)21/2]G21CT( ~HZ)Tg is the

GETKF counterpart of the modified Kalman gain1

appropriate for ensemble perturbations discussed in

Whitaker and Hamill (2002) and ~H is the observation

operator linearized mean and normalized by the inverse

square root of the observation error covariance matrix.

The form of (25) suggests that we could replace the

modulated ensemble perturbations [(v f
i 2 vf1TM)/

ffiffiffiffiffi
M

p
]

that the matrix (I2 ~K~H) left multiplies by [x f
i 2 xf ] the

raw unmodulated K ensemble perturbations. Doing so

yields an equation for the ith posterior ensemble mem-

ber of the form

[xai 2 xa]5 [x f
i 2 xf ]2 ~K~H[x f

i 2xf], i51, 2, . . . ,K, (26)

where the posterior analysis mean xa has been set equal

to the va obtained from (12). Equation (26) associates an

analysis member xai to each raw, unmodulated forecast

member x f
i . For the single observation case (p 5 1), it

1 The modified gain discussed here is to map prior ensemble

perturbations to posterior perturbations. In contrast, the modified

gains of Penny (2014), Hamrud et al. (2015), and Bonavita et al.

(2015) map prior means to posterior means.
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can be shown that (26) would give identical results to

Whitaker and Hamill’s (2002) and Anderson’s (2001)

filters.

Note that a key step in obtaining (26) was to simply

replace [(v f
i 2 vf1TM)/

ffiffiffiffiffi
M

p
] by [x f

i 2 xf ] in (25). Making

the corresponding replacements in (24) and skipping the

linearization step of (25) gives

xai 5 xa 1

(
(x f

i 2 xf )2 ZC[I2 (G1 I)21/2]G21CT

3 ( ~HZ)T
"
~H(x f

i )2
1

K
�
K

i51

~H(x f
i )

#)
, (27)

for i5 1, 2, . . . , K. Unlike (26), (27) was derived without

linearizing the observation operator and hence does not

have explicit dependence on the degree of linearity of

the observation operator.

Within the context of an LETKF, the assimilated

observations would be confined to some observation

volume and (27) would only update a single vertical

column near the center of the observation volume. In

this case, (27) is better expressed as

S
j
xai 5S

j
xa 1S

j
f(x f

i 2 x f
i )2ZC[I2 (G1 I)21/2]G21CT

3 ( ~H
j
Z)TR21/2

j [H
j
(x f

i )2H
j
(xf )]g, where

H
j
(xf )5

1

K
�
K

i51

H
j
(x f

i ) .

(28)

Thus, (28) allows the analysis perturbations corre-

sponding to the forecast perturbations to be obtained

in a way that is consistent with the localized ensemble

covariances. To better reflect on the way (28) de-

termines ensemble perturbations and to allow for the

inclusion of a posterior initial perturbation inflation/

attenuation factor, it is helpful to rewrite it in terms of an

expression for the n3Kmatrix Xa of analysis members:

S
j
Xa 5 (S

j
xa)1TK 1 afS

j
Xf 0 2S

j
ZC[I2 (G1 I)21/2]G21CT

3 ( ~HZ)T( ~HXf 0)g
5 (S

j
xa)1TK 1 a(S

j
Xa0
raw) ,

(29)

where (SjX
a0
raw) is a raw estimate of the analysis pertur-

bations to be added to the analysis mean to create the

new ensemble. [Note that thematrix (SjX
a0
raw) is precisely

equal to the term in curly brackets in (29).]

Equation (29) contains two distinct proxies for fore-

cast error realizations: the M-member modulated en-

semble Z and the K forecast ensemble perturbations Xf 0

produced by the nonlinear model. The former has a

relatively high-rank covariancematrix; the latter a lower

rank covariance matrix. As discussed by Wang et al.

(2007), the ETKF systematically underestimates the

analysis error variance when the rank of the ensemble

covariance matrix in observation space ~HPf
ens

~HT is sig-

nificantly lower than the rank of the corresponding

true covariance matrix ~HP ~HT. Given the similarity

of the GETKF to the ETKF, we should anticipate that

(29) is likely to provide a poorer estimate of the aver-

age analysis error variance than (10). To ensure that

this deficiency does not affect the variance of the

GETKF perturbations generated by (29), we denote

SjP
a
rawS

T
j 5 (SjX

a0
raw)(SjX

a0
raw)

T/(K2 1) and set

a5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[trace(S

j
Pa
METKFS

T
j )]

trace(S
j
Pa
rawS

T
j )

vuut , (30)

in (29). Note that this inflation factor can be computed

before observations are assimilated, and it is not directly

related to the size of the difference between the obser-

vations and forecasts. We shall simply refer to it as in-

herent GETKF inflation. This factor ensures that the

average analysis error variance produced by the

GETKF is identical to that produced by the METKF.

We shall denote the covariance matrix of the analysis

ensemble obtained using (30) in (29) by Pa
GETKF.

To better understand the properties of Pa
GETKF, it is

useful to consider the expected value of Pa
GETKF in the

case of a linear observation operator:

S
j
[xai 2 xa]5aS

j
f[x f

i 2 xf ]2 ~K~H[x f
i 2 xf ]g, and hence

S
j
hPa

GETKFiST
j 5a2S

j
fP2 ~K~HP2P~HT ~KT

1 ~K~HP~HT ~KTgST
j .

(31)

For future reference, we will denote hPa
GETKFi by Pa

GOPT.

With (29), the number of operations required to up-

date an individual ensemble member is roughly the

same as updating the ensemble mean [see (12)]. This

means that the dominant computational cost is pro-

portional to Mp; 107 for each ensemble member up-

date.WithK; 100, this gives a total cost proportional to

KMp; 109 for updating the entire ensemble. This is

slightly larger than the order nM2 ; 53 108 operations

associated with the standard ETKF ensemble update.

However, it is still smaller than the M2p; 1010 opera-

tion factor associated with computing the A matrix of
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(9). The M2p; 1010 cost is also much larger than that

associated with computing the inflation factor in (30).

Thus, we anticipate that the overall cost of updating the

ensemble using (29) will be similar to that associated

with the METKF update given by (17).

4. Comparison of the accuracy of Pa
GETKF with

Pa
PO, P

a
SS, and Pa

DS in a simple model

Within the context of the simple statistical model

discussed earlier, our observation volume and the set of

variables to be updated are identical, so we can drop the

selection operator from (29). As shown in the appendix,

the true analysis error covariance matrix Pa 5 h«a(«a)Ti
associated with the METKF analysis mean is given by

Pa 5P2K ~HP2 (K ~HP)T 1K[ ~HP ~HT 1 I]KT,

where P5 h« f (« f )Ti, ~HP5 h ~H« f (« f )Ti, and

~HP ~HT 5 h ~H« f ( ~H« f )Ti ,
(32)

where K5Za( ~HZa)T is the METKF gain matrix used to

obtain the METKF posterior mean using (12). In our

simple statistical model, the true forecast error co-

variance matrices P, P ~HT and ~HP ~HT are precisely

known, so it is a simple matter to compute the true

analysis error covariance matrix Pa associated with the

ensemble-based METKF suboptimal gain. This enables

us to use Pa to measure the inaccuracy of theK-member

analysis ensemble covariance matrices Pa
PO, P

a
SS, P

a
DS,

and Pa
GETKF, respectively, corresponding to the per-

turbed observations (18), stochastic subsampling (19),

deterministic subsampling (20), and the GETKF (29)

approaches. It is also of interest to measure the error of

the statistically expected analysis error covariance ma-

trices hPa
SSi5Pa

METKF (10) and hPa
GETKFi5Pa

GOPT (31).

The similarity of all these approximate analysis error

covariancematrices to the true analysis error covariance

matrix Pa was measured with two distinct measures.

First, we compute the weighted mean square error of

each of the elements given by

mse(Pa
approx)5

1

n2 �
n

j51
�
n

i51

fFg
ij
(fPa

approxgij 2 fPag
ij
)2 ,

(33)

where Pa
approx is some approximation to the true analysis

error covariance matrix Pa obtained from (32) and the

weighting fFgij is given by the (ij)th element of the lo-

calization matrix F. Such weighting is justifiable be-

cause sampling errors are unavoidable away from the

diagonal, and during data assimilation, such sampling

errors are attenuated by a localization matrix. The sec-

ond measure we employ is that of the unweighted

‘‘correlation’’ of the elements given by

corr(Pa
approx)5

�
n

j51
�
n

i51

(fPa
approxgijfPag

ij
)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
n

j51
�
n

i51

(fPag
ij
)2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

j51
�
n

i51

(fPa
approxgij)2

s .

(34)

Note that corr(Pa
approx)5 1 if Pa

approx 5 bPa, where b is

some arbitrary scalar. Thus, (34) may be viewed as a

measure of the similarity of the shapes of the two co-

variance matrices as it is independent of the amplitude

of the field while (33)measures some combination of the

similarity of shape and amplitude. In considering (34),

note that since fPagij is near zero for distant variables, in

the product (fPa
approxgijfPagij) the corresponding (pos-

sibly spurious) analysis ensemble correlations fPa
approxgij

between distant variables are not able to affect the

measure corr(Pa
approx).

The MSE and correlation measures of accuracy were

computed over eight entirely independent trials.

Figure 5 plots the MSE and correlation measures over

each of these trials for Pa
PO (green line), Pa

SS (blue line),

Pa
GETKF (black line), Pa

METKF (mauve line), and Pa
GOPT

(red line). It shows that in each of these trials, under

both theMSE and correlation measures of accuracy, the

FIG. 5. (a) The weighted MSE [see (33)] of estimates of the true

analysis error covariance matrix Pa associated with Pa
PO (green

line),Pa
SS (blue line),P

a
GETKF (black line),P

a
METKF (mauve line), and

Pa
GOPT (red line) for eight entirely independent trials. (b) As in (a),

but for lines that pertain to the correlation [see (34)] between the

approximate and true elements of the analysis error covariance

matrix.

NOVEMBER 2017 B I SHOP ET AL . 4585

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 04:00 PM UTC



ranking from the most accurate to the least accurate

estimate of the analysis error covariance matrix was as

follows: Pa
GOPT, P

a
METKF, P

a
GETKF, P

a
PO, and Pa

SS.

We have not displayed the results for the deterministic

subsampling technique in Fig. 5 because it was found that

Pa
DS gave worse results than all of the other methods. As

good a Pa
DS as any other was obtained from setting

Xa
DS 5 (Sjv

a)1TK 1SjZ
a[:, f1:L2 1:K(L2 1)g]. Recall-

ing that K 5 50 and L 5 10 in our simple model experi-

ment, this approach selects six members (1, 10, 19, 28, 37,

and 46) that are raw members modulated by column 1 of

the truncated renormalized localization matrix and six

more members (55, 64, 73, 82, 91, and 100) that are raw

members modulated by column 2, and so on until 50

members were obtained. There was not a great deal of

sensitivity to changing which modulated ensemble mem-

bers were selected. The deterministic selection procedure

associated with the above equation was found to be better

than or statistically indistinguishable from other selection

procedures. In this case, this selection procedure was sig-

nificantly superior to that used by Kretschmer et al. (2015)

of just choosing the first 50 members of the expanded

ensemble, which correspond to the 50 raw members

modulated by column 1 of the localization matrix. How-

ever, since the ensemble expansion technique employed

by Kretschmer et al. (augmentation with climatological

forecast error proxies) is very different from the ensemble

modulation expansion techniqueused here, our result does

not imply that Kretchmer et al.’s deterministic sub-

selection approach was suboptimal for their application.

Most promising for the GETKF is the fact that its

analysis ensemble covariance matrix estimate was always

closer to the true forecast error covariancematrix than any

of the other techniques of obtaining K analysis perturba-

tions from the M METKF analysis perturbations.

5. Cycling experiments with a simple
dynamical model

To further examine GETKF performance, here we

test it in a data assimilation cycling mode using a newly

created ‘‘storm track’’ version of the Lorenz-96 model

(Lorenz and Emanuel 1998) and observations that are

an integral of the state.

The storm-track model differs from the Lorenz and

Emanuel (1998) model in three ways; 1) it uses 80 grid

points instead of 40, 2) the linear damping term2xj is re-
placed by2[0:51 2 cos4( jp/80)]xj, and 3) the forcing term

F (which is set to a constant value of 8 in the original

model) is treated as an independent random variable at

every grid point. Specifically, if the forcing at the previous

time step was Fold, then the equation used to compute the

forcing at the new time step Fnew is given by

F
new

5 rF
old

1 (12 r)G , (35)

where G is a random number drawn from a gamma

distribution. To interpret the scalar r in this equation,

note that rightmultiplying (35) byFold and recalling that,

by construction hGFoldi5 0 and hF2
oldi5 hF2

newi, it fol-

lows that r5 hFnewFoldi/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihF2

oldihF2
newi

p
gives the corre-

lation of F over one time step.We set r5 e21/3 consistent

with an e-folding time scale of three model time steps.

Equation (35) also implies that

hFi5 rhFi1 (12 r)hGi, because hF
new

i5 hF
old
i

5 hFi5. hFi5 hGi ,
(36)

where the angle brackets indicate the expectation op-

erator. Hence, (36) implies that the mean of the F values

produced by (35) must equal the mean ofG. We set the

mean of the gamma distribution from which the values

of G to be equal to 8, thus ensuring that hFi5 8.

Subtracting themean from both sides of (35), and then

squaring and taking expectations, leads to

var(G)5
(11 r)

(12 r)
var(F) . (37)

We chose to set var(G)5 [(11 r)/(12 r)](1/8), thus

ensuring that the variance of the random time series of F

about its mean value of 8 was equal to 1/8.

The spatially varying linear damping term 2[0:51
2 cos4( jp/80)]xj results in a damping that is 2.5 times the

nominal value at each end of the periodic domain, de-

creasing to half the nominal value in themiddle. Figure 6

shows that these changes lend a storm-track-like pattern

of behavior to the Lorenz-96 model, and for this reason

we refer to it as a storm-track version of the model. The

climatological covariance matrix (Fig. 7) for this model

shows that covariances between state variables, though

weaker, are more coherent in space in the high-damping

regions at either end of the periodic domain. The sta-

tistical properties of the random forcing are identical in

the truth run and the forecast model, but different ran-

dom seeds are used so that the random sequences are

different. The random forcing introduces a small-scale

and irreducible source of random error covariance to the

true background-error covariance in the ensemble data

assimilation (in addition to sampling error) that cannot

be reduced by, for example, increasing ensemble size.

As a consequence, the analysis error asymptotes to a

higher minimum level, as the ensemble size and locali-

zation length scale are increased. For the purposes of

this paper, this is desirable because the differences
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between the assimilation algorithms are most evident at

smaller localization scales and disappear entirely at long

localization scales.

Data assimilation experiments are performed with

eight ensemble members, using the serial algorithm of

Whitaker and Hamill (2002) (incorporating both ob-

servation space localization and model space localiza-

tion via modulated ensembles), the METKF and the

GETKF (both of which employ model space localiza-

tion using modulated ensembles). All experiments use

the observation-dependent posterior inflation algorithm

of Hodyss et al. (2016).2 The tunable parameters for the

inflation scheme [a and b in Eq. (4.4) of Hodyss et al.

(2016)] are both fixed to 1.0 for all of the experiments.

Note that for the GETKF, the Hodyss et al. posterior

inflation is applied to the perturbations obtained using

(29), where (29) includes the multiplicative factor a that

through (30) ensures that the trace of the GETKF pos-

terior covariance matrix is identical to that of the cor-

responding METKF posterior covariance.

Each observed value is equal to the average of seven

spatially contiguous grid points. Each grid point has a

unique average associated with it. Anderson and Lei

(2013) found that such integral observations are particu-

larly challenging for observation space localization in the

standard 40-variableLorenz-96model. These observations

are analogous to satellite radiance observations, where the

forward radiative transfer operator involves a vertical in-

tegral of the state.3

Since we chose to assimilate all 80 unique seven-point

running averages of the system each data assimilation

cycle, the observation error covariance matrix R has the

same size as the forecast error covariance matrix P. We

assumed R to be diagonal with diagonal elements equal

to 0.01. Observations are assimilated every time step (6 h

or 0.05 nondimensional time units) and experiments are

run for 100 000 assimilation cycles after a spinup period

of 1000 assimilation cycles, with both observation space

and model space localization.

When using idealized models for data assimilation

experiments, it is of interest to note the ratio of the

error-doubling time to the data assimilation time in-

terval. While we have not performed a detailed analysis

of the error-doubling time in this model, we do know

how our modifications to the original Lorenz and

Emanuel (1998) model alter the growth of ensemble

spread. Specifically, allowing the diffusion to vary zon-

ally had little overall impact on the growth of the en-

semble spread but changing the forcing F from a

constant to a randomly varying F increased the growth

of the spread over a single time step from 1.15 to 1.66.

This suggests that the error-doubling time for our

modified version of this model is even shorter than that

of the original model. Lorenz and Emanuel (1998) state

that the error-doubling time of their original model was

2 days—8 times larger than the data assimilation time

FIG. 7. The climatological covariance matrix for the modified

Lorenz model.

FIG. 6. Contours as a function of time (y axis) and space (x axis)

for the modified version of the Lorenz-96 model described in sec-

tion 5 with zonally varying damping and random forcing. Note that

the solution is low amplitude and fairly regular in the high-damping

regions at either end of the periodic domain, and high amplitude

and chaotic in the center of the domain where the damping is 5

times weaker.

2 Code in the Python programming language to reproduce all of

the experiments shown here is available online (https://github.com/

jswhit/L96).

3Many radiance observations are vertical integrals of nonlinear

functions of the state but, for simplicity, we ignore such complex-

ities in this paper.

NOVEMBER 2017 B I SHOP ET AL . 4587

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 04:00 PM UTC

https://github.com/jswhit/L96
https://github.com/jswhit/L96


interval used in our experiments so it would be less than

8 times larger in our experiments.

Both observation space and model space localization

use a Gaspari–Cohn (GC) function (Gaspari and Cohn

1999). We denote the GC function by GC(dij, l). Here,

GC(dij, l) is a function of the separation distance dij

between the ith and jth grid points and a length scale l.

The structure of the climatological covariance matrix

(Fig. 7) suggests that a spatially varying covariance lo-

calization length scale, tighter in the center of the do-

main and broader at each end, should perform better

than a constant localization scale. The variation of the

covariance function length scale appears to mirror the

spatial structure of the linear damping terms; further-

more, dynamical reasoning suggests that error correla-

tion length scales would also be partially controlled by

the linear damping term. For those two reasons, and to

reduce the size of the parameter space of varying lo-

calization length scales to be explored, we chose to let

the GC localization length scale have the same spatial

structure as the linear damping term so that

l5 l(m)5 [0:51 2 cos4(mp/80)]d
0
, (38)

where m is the index locating the grid point of interest

and d0 is a reference localization length scale. To

create a symmetric localization matrix from the GC

function, we let the (ij)th element of this localization

matrix F be given by

fFg
ij
5

1

2
fGC[d

ij
, l(i)]1GC[d

ji
, l( j)]g. (39)

Note that the blending of the GC functions associated

with the ith and jth grid points in (39) ensures that the

localization matrix is symmetric. We have confirmed

that the use of the spatially varying length scale given by

(38) results in analysis errors that are about 10% smaller

than any constant localization length scale. A plot of the

localization matrix arising from (39) is given in Fig. 8 for

the case where the reference localization length scale

d0 5 20.

In our implementation of the observation space lo-

calization form of the serial EnSRF, each observation is

used to update the mean andK raw perturbations of the

state variables using ensemble covariances localized

with the function given by (39) in which the distance dij

between the observation and a state variable is com-

puted by assuming that the observation is located at

the middle of the kth boxcar averaging kernel. In

other words, the ‘‘location’’ assigned to each observa-

tion is the fourth grid point of the seven consecutive grid

points involved in the running average that defines the

observation.

For model space localization, a synthetic modulation

product ensemble is created by modulating the eight-

member ensemble with the eigenvectors of the locali-

zation matrix implied by the spatially varying GC

localization function using the procedure described in

section 2. In all experiments, we ensure that the number

L of leading eigenvectors retained in our approximation

of (39)’s localization matrix is sufficient to explain 99%

of the trace of F. The scaled eigenvectors are then used

to perform the modulation, leading to a synthetic en-

semble of size 8L, where L is a function of the reference

localization length scale d0 [see (38)] of theGC function.

As d0 decreases, L increases. When the modulated en-

semble is used in the serial EnSRF, each observation

and the modulated ensemble covariances are used to

update the mean, theMmodulated perturbations, and the

K raw perturbations of the state variables. The modulated

ensemble covariances are not localized because the local-

ization is already ‘‘baked into’’ the ensemble via the

modulation product. After all observations have been as-

similated by the serial EnSRF, the fully updated K raw

perturbations are added back to the posterior mean to

create the final posterior ensemble and this K member

ensemble is propagated forward by the nonlinear model.

The GETKF simultaneously assimilates all of the

observations in the local observation volume, using (12)

to update the ensemble mean and (29) to update the K

raw ensemble perturbations. In this toy model example,

the local observation volume is global in that it contains

all of the observations.

The METKF, on the other hand, involves the com-

putation of a set of weights that are used to transform

the entire set of 8L-member background ensemble

perturbations into an 8L-member set of analysis

FIG. 8. Covariance localizationmatrix implied by (39) with d0 5 20.
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ensemble perturbations. The first eight members of the

prior 8L-member modulated ensemble are in fact the

original eight members propagated by the forecast

model multiplied by the first eigenvector of the locali-

zation matrix. This knowledge suggests an ad hoc ap-

proach in which one would try and ‘‘undo’’ the

modulation in the posterior ensemble by elementwise

dividing each of the first eight members of the posterior

ensemble by the first eigenvector of the localization

matrix. Since the first eigenvector typically has a rela-

tively simple structure without zero values, demodula-

tion of the first eight posterior members by the first

eigenvector seems like the best option. We call this ap-

proach the ‘‘demodulated’’ METKF.

Figure 9 shows the structure of the first eigenvector of

the localizationmatrix with d0 5 20. Since the amplitude

of the eigenvector changes by a factor of 68 across the

domain, undoing the modulation by dividing the poste-

rior ensemble perturbations by this eigenvector results

in a loss of roughly two decimal places of precision. The

amount of precision lost is a function of the severity of

the localization, as using d0 5 10 (15) instead of 20 re-

sults in a loss of 9 (5) digits of precision. We note in the

case of the operational NCEP data assimilation system

that the first eigenvector of the vertical localization

matrix contains values very close to zero, and these near-

zero values cause an extreme loss of precision in the

updated ensemble, so that the demodulated METKF

approach is infeasible. For the same reason, the de-

modulated METKF approach was also unworkable for

the set of problems considered in section 4. As pre-

viously noted, another alternative is to use the perturbed

observations approach [see (18)].

Figure 10 shows the root-mean-square error (RMSE)

of the ensemble mean analysis (relative to the nature

run used to generate the observations) for the serial

filter using observation space localization, the METKF

(both the ‘‘perturbed-obs’’ and demodulated variants)

and the GETKF using model space localization, as a

function of the GC localization length scale d0. For

reference, the horizontal black dashed line shows

the near-optimal analysis error obtained by running a

256-member ETKFwith no localization. For all values

of d0, model space localization outperforms observa-

tion space localization. The GETKF outperforms the

demodulated METKF for the d0 values for which the

demodulated METKF is stable. The demodulated

METKF fails for d0 , 18. The demodulated METKF

outperforms the perturbed-obs variant for localiza-

tion length scales at which it is stable, but the

perturbed-obs METKF is stable for all d0 localization

scales, and has a lower minimum error. Deterministic

or stochastic subsampling can also be used within the

METKF to choose a subset of ensemble perturbations

to advance to the next observation time, as discussed

in section 4. Both of these subsampling approaches

were found to perform poorly in cycled data assimi-

lation mode with this simple system.

The modulated-ensemble serial filter with model

space localization performs identically to the GETKF

when the adjustment factor a in (29) is set equal to 1.

However, when (30) is used to define a, the GETKF

outperforms the modulated-ensemble serial filter for

d0 . 10 and is about the same or marginally better than

the serial filter for d0 # 10.

FIG. 10. RMSE as a function of the reference GC localization

length scale d0. Results for the serial EnSRF for observation space

localization and model space localization are shown by the solid

and dashed blue lines, respectively. Results for the demodulated

METKF and GETKF with model space localization are shown by

the red and black lines, respectively. Results for the perturbed-obs

METKF are shown in cyan. For reference, the horizontal black

dashed line shows the RMSE obtained with a 256-member ETKF

with no horizontal localization.

FIG. 9. First eigenvector of localization matrix shown in Fig. 8.
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Figure 11 shows that when (30) is used to define a, its

average value increases with increasing localization

length scale d0. Intriguingly, at the localization length

scale that minimizes RMSE, a is approximately equal to

1 and has a neutral or small effect on ensemble pertur-

bation size. If it were generally true that the localization

that makes the inherent GETKF inflation neutral also

minimizes RMSE, one could adaptively decide the ver-

tical localization for each vertical column by varying the

localization until the ‘‘a’’ obtained from (30) became

equal to 1. We leave it to future research to assess the

merit of the associated hypothesis that the localization

that neutralizes inherent GETKF inflation also mini-

mizes RMSE.

6. Conclusions

The GETKF has been introduced and described. It

is a variation on the ETKF that provides a solution to the

problem of how to rapidly obtain just K posterior en-

semble members from an ETKF-type method when the

size of the forecast ensemble has been synthetically in-

creased from K members to KL members. To better

assess the potential value of the GETKF, alternative

methods for creating just K analysis members from

KL members were also examined. These alternative

methods included the well-established perturbed ob-

servation method, a stochastic subsampling of the

analysis distribution implied by the KL member poste-

rior ensemble, a deterministic subsampling approach,

and a demodulation approach.

In tests with a statistical model that used 50 raw en-

semble members to assimilate a vertical profile of ob-

servations, each of which was an integral of the state and

in which the true suboptimal analysis error covariance

matrix was perfectly known, it was found that the

GETKF produced significantly more accurate analysis

error covariance matrices than any of the aforemen-

tioned alternatives.

In cycling data assimilation tests with a newly de-

veloped 80-variable storm-track version of the Lorenz-

96 model and observations that were integrals of the

state, the following results were obtained:

(i) Model space localization outperformed observa-

tion space localization.

(ii) The GETKF method for obtaining a K-member

posterior ensemble from a KL-member prior en-

semble resulted in lower mean square analysis

errors than either the demodulation or perturbed

observation methods.

(iii) If the GETKF’s posterior adjustment factor was set

equal to unity rather than the value given by (30),

GETKF’s performance was identical to that ob-

tained whenmodulated ensembles were used in the

serial EnSRF and the serial EnSRF’s modified gain

was used to obtain K posterior perturbations.

(iv) The GETKF gave superior or equivalent perfor-

mance to the EnSRF when (30) was used to set the

GETKF’s posterior adjustment factor a. The supe-

rior performance was confined to localization

length scales larger than the optimal localization

length scale. Intriguingly, at the optimal localiza-

tion length scale, the average value of a was

approximately equal to 1.

In dynamical systems that have a richer range of scales

than the simple storm-track model considered here, it

can be impractical to optimally tune the localization

length scale for all the phenomena likely to occur. In

such situations, the lack of sensitivity of GETKF per-

formance to localization length scale could lend it ad-

vantages over the EnSRF.

Within the context of LETKFs, our simple model

results suggest that the GETKF ensemble update algo-

rithm should replace the ETKF ensemble update when

modulation product ensembles have been used for ver-

tical model space localization. Penny et al. (2015) have

demonstrated how the removal of vertical localization

allows the LETKF to update entire vertical columns of

state variables simultaneously. The GETKF with en-

sembles modulated in the vertical also simultaneously

updates entire vertical columns of state variables, but in

contrast to Penny et al. (2015), it incorporates vertical

model space localization. For observations of variables

FIG. 11. The ordinate axis on the right pertains to the mean

GETKF inflation value a from (33). The red line shows how this

value changes with localization scale. The ordinate axis on the left

refers to the analysis error of the GETKF and the blue line shows

how this changes with localization length scale. (Although the

vertical scale is different, this line is identical to the black line in

Fig. 10.) Interestingly, the a value is approximately equal to 1 at the

same localization length scale that minimizes the analysis error.
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that are vertical integrals of the state such as satellite-

based radiance observations, the vertical ‘‘location’’ of

the observation is ill-defined. This makes observation

space localization particularly problematic. Our exper-

iments together with those of Campbell et al. (2010) and

Whitaker (2016) have found that model space localiza-

tion was more effective than observation space locali-

zation when assimilating observations of variables that

are vertical integrals of the state.

Within the context of deterministic EnKFs that as-

similate observations serially and employ model space

vertical localization through a modulation product en-

semble expansion, our results suggest that performance

might be improved by replacing the one-at-a-time serial

assimilation of a vertical column of observations by an

‘‘all at once’’ assimilation of the entire vertical column

of observations using the GETKF. In such systems, the

LETKF could achieve ensemble covariance localization

in the horizontal using horizontal-distance-dependent

observation error variance inflation while a serial de-

terministic EnKF could achieve it using localization

functions that were solely a function of horizontal

distance.

In future work, we plan to apply a local volume ver-

sion of the GETKF, using modulation product ensem-

bles to assimilate satellite radiances with vertical

localization in model space. Preliminary experiments

using a serial assimilation approach (Whitaker 2016)

have shown this approach to significantly enhance the

ability of ensemble methods to extract information from

satellite radiances. Apart from the potential skill gains

mentioned in result iv above, it is possible that the local

GETKF version of the algorithm will be found to be

computationally more efficient than the serial filter in

atmospheric applications because 1) the number of

observations typically far exceeds the number of

modulated ensemble members and 2) the matrix A in

(6) and its eigenvalue decomposition (7) required to

compute both the Kalman and modified Kalman gains

need only be done once for each update of an entire

vertical column.
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APPENDIX

Analysis Error Covariance Matrix in the Presence
of a Suboptimal Gain

Here, we consider the class of data assimilation

schemes for which

xa 5 xf 1K[R21/2y2 ~H(xf )] . (A1)

Subtracting the truth from both sides of this equation

gives

«a 5 « f 1K[R21/2«o 2 ~H« f ] , (A2)

where «a 5 xa 2 xt, « f 5 xf 2 xt, «o 5 y2 yt, and ~H« f 5
[ ~H(xf )2R21/2yt]. Assuming that there is zero co-

variance between the observation and forecast errors

[h«o( ~H« f )Ti5 0], (A2) then implies

Pa 5 h«a«aTi5P2K ~HP2 (K ~HP)T 1K[ ~HP ~HT 1 I]KT,

where P5 h« f (« f )Ti, ~HP5 h ~H« f (« f )Ti, and ~HP ~HT 5 h ~H« f ( ~H« f )Ti . (A3)
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